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The stability of a compositionally buoyant plume, of circular cross-section, rising in
a rotating infinite fluid is investigated. Both plume and fluid have the same non-zero
kinematic viscosity, ν, and thermal diffusivity, κ. The growth rate of the instability
depends on the Taylor number, Ta (which is a dimensionless number measuring the
effect of the Coriolis force relative to the viscous force) and on the thickness, s0, of
the plume in addition to the Prandtl number, σ(= ν/κ) and the Reynolds number,
R (which measures the strength of the forcing). The analysis is restricted to the case
of small R. It is found that the presence of rotation enhances instability. A simple
model of a single interface separating the two parts of an infinite fluid is investigated
first in order to isolate the mechanism responsible for the increase in the growth rate
with rotation. It is shown that the Coriolis force interacts with the zonal velocity
component to produce a velocity component normal to the interface. For the right
choice of wave vector components, this normal velocity component is in phase with
the displacement of the interface and this leads to instability. The maximum growth
rate is identified in the whole space of the parameters σ, Ta , s0 when R � 1. While
the maximum growth rate is of order R2 in the absence of rotation, it is increased
to order R in the presence of rotation. It is also found that the Prandtl number, σ,
which has a strong influence on the growth rate in the absence of rotation, plays a
subservient role when rotation is present.

1. Introduction
The study of convective motions driven by the energy released by the solidification

of a component of a fluid alloy has received considerable attention recently because
of its relevance to many industrial and geophysical applications (see e.g. Copley et
al. 1970; Loper 1978, 1983, 1987; Loper & Roberts 1981, 1983; Roberts & Loper
1983; Davis 1990; Huppert 1990; Tait & Jaupart 1992; Worster 1992). When a two-
component fluid melt, with the heavier component having the higher melting point,
is chilled from below the heavy component solidifies first and settles at the bottom of
the container (see, e.g. Hills, Loper & Roberts 1983). The solidification front, however,
can suffer morphological instability (Kurz & Fisher 1989) and consequently a thin
region develops between the underlying solid and the overlying fluid alloy. This thin
region, known as a mush, contains both fluid depleted of the heavy component and
solid crystals. As the solidification front advances, the mushy layer thickens and the
presence of the buoyant fluid in it makes it unstable. The linear instability of the
mushy layer can be of two types. One type occurs in a thin layer on top of the mushy
layer and this is associated with very little interaction between the mushy layer and
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the overlying fluid. The other type of instability has a larger wavelength and leads to
strong interaction between the mushy layer and the overlying fluid (Worster 1992).
This latter instability leads to the formation of chimneys in the mushy layer where
the buoyant fluid escapes upwards in the form of plumes (see e.g. figure 1 in Eltayeb
& Loper 1991) or in the form of blobs (Moffatt & Loper 1994)

Motivated by the geophysical applications, Eltayeb & Loper (1991, 1994, 1997)
studied simple models of compositional convection and isolated a mode of instability
whose (dimensionless) growth rate is proportional to the square of the Reynolds
number, R, when R is small (see (1.2) below). This mode of instability is present for
all values of the Prandtl number. The present work extends the study by Eltayeb &
Loper (1997) to include the influence of rotation. The motivation for the inclusion of
rotation is a geophysical one. Convective motions caused by the solidification of the
Earth’s inner core are believed to contribute to core motions which interact with the
geomagnetic field and help to maintain it. Recent work on the geodynamo suggests
that the generation of magnetic fields depends on the small-amplitude asymmetric
parts of the field and flow (Lister & Buffett 1995). Although we will not include a
magnetic field in the analysis below, rotation plays a crucial role in the dynamics of
the Earth’s core. Previous studies on double-diffusive fluids (see e.g. Eltayeb 1972)
showed that rotation normally plays a stabilizing role. Since the instability identified
in the absence of rotation (Eltayeb & Loper 1991) is basically a shear flow instability,
the effect of rotation on this mode of instability may not be the same. One of the
purposes of this analysis it to investigate the interaction of rotation and shear flow.

A compositionally buoyant column of fluid of radius s0 is rising in an infinite less-
buoyant fluid and both fluids are rotating about the vertical with a uniform angular
speed ω. A temperature profile with a vertically constant (and positive) temperature
gradient, γ, also varies with the horizontal coordinate. The two fluids possess the
same uniform kinematic viscosity, ν,and thermal diffusivity, κ. The stability is then
governed by the Taylor number

Ta =

(
2ωL2

ν

)2

(1.1)

in addition to the Reynolds and Prandtl numbers R and σ, respectively, defined by

R = βC̃

(
gκ3

α3γ3ν5

)1/4

=
UL

ν
, σ =

ν

κ
(1.2)

in which C̃ is the amplitude of the basic-state concentration of the light component
and α, β, L,U and g are defined in §2 below. Since the Reynolds number is directly
proportional to the amplitude of the concentration of light material, the instability
is entirely due to the presence of the light material, i.e. the instability is driven by
compositional buoyancy.

In §2, we formulate the problem. The study presented below showed that rotation
enhances instability. Previous studies have shown that the growth rate of the instability
depends on the thickness of the plume as well as on the curvature of the plume
surface (Eltayeb & Loper 1994, 1997). In order to clarify this unexpected result we
investigate the simple model of a single interface rotating in an infinite fluid in §3.
This model rules out the effects of thickness and curvature and allows us to isolate
the influence of rotation on the basic physical mechanism driving the instability.
For the oblique disturbances, the transverse pressure gradient does not vanish. It is
found that this pressure gradient produces a transverse component of velocity which
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interacts with the vertical rotation to produce a Coriolis force in the direction normal
to the interface. This force produces a component of velocity normal to the interface.
Since the interface is a material one, the velocity at the interface is directly related
to the displacement. When the wavefront is inclined away from the rotation axis
the displacement of the interface is enhanced by the presence of rotation and this
promotes instability. As a result, the maximum growth rate is dramatically increased
from order R2 in the absence of rotation to order R when Ta = O(1) and R is small.
The instability belongs to oblique modes. For vertical modes the growth rate has
the same order of magnitude as in the absence of rotation. In §4, we examine the
stability of a cylindrical plume rising in a rotating infinite fluid and clarify the roles
played by the thickness of the plume and the curvature of the cylindrical surface.
Some concluding remarks are made in §5.

2. Formulation
Consider a fluid of infinite extent rotating uniformly, with angular speed ω, about

the vertical. The fluid has density, ρ, which depends on both temperature, T , and
concentration, C , of the light component through the relation

ρ/ρ0 = 1− α(T − T0)− β(C − C0). (2.1)

Here α is the coefficient of thermal expansion and β is a parameter measuring the
variations of density with concentration, while T0, C0, ρ0 are reference values. The
fluid possesses non-zero kinematic viscosity, ν, and thermal diffusivity κ. The basic
equations governing the flow are

ρ

[
∂u

∂t
+ (u · ∇)u+ 2ωẑ × u

]
= −∇p+ ρν∇2u− ρgẑ, (2.2)

∇ · u = 0, (2.3)(
∂

∂t
+ u · ∇

)
T = κ∇2T , (2.4)(

∂

∂t
+ u · ∇

)
C = 0. (2.5)

Here u is the velocity, p the pressure, g the constant gravitational acceleration and
ẑ is a unit vector directed vertically upwards. In equation (2.5) we have neglected
material diffusion.

Define a Cartesian coordinate system O(x, y, z) in which Oz is vertically upwards
and Ox, Oy are mutually orthogonal horizontal directions (see figure 1). Equations
(2.2)–(2.5) are satisfied by a static solution in which the temperature has a uniform
vertical gradient γ:

u = 0, C = C0, dT/dz = γ. (2.6)

We now assume that the light component has a concentration of amplitude C̃ .
This will induce fluid motions in the fluid. Before we determine these motions, we
cast (2.2)–(2.5) in dimensionless form. This is achieved by taking (νκ/αγg)1/4 (= L),
(κ/αγνg)1/2 (= τν), C̃ , βC̃(gκ/αγν)1/2 (= U), βC̃/α, ρ0βC̃(g3νκ/αγ)1/4 as measures of
length, time, compositional difference, velocity, temperature difference and pressure
difference, respectively. The length scale defined here is the salt-finger length scale
(see e.g. Eltayeb & Loper 1991, hereinafter referred to as EL1) and the time scale
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Figure 1. The geometry of the single rotating interface model.

corresponds to the viscous time scale

τν = L2/ν. (2.7)

The dimensionless equations are

∂u

∂t
+ Ru · ∇u+ Ta1/2ẑ × u = −∇(p+ z/βC̃) + ∇2u+ (C − C0 + T − T0)ẑ, (2.8)

∇ · u = 0, (2.9)

σ

(
∂

∂t
+ Ru · ∇

)
T = ∇2T , (2.10)(

∂

∂t
+ Ru · ∇

)
C = 0. (2.11)

The three dimensionless parameters σ, R, Ta are known as the Prandtl, Reynolds and
Taylor numbers, respectively, and have been defined in §1 above.

We assume that the solutions of (2.8)–(2.11) have the form

u = w̄ẑ + εu†, T = Tb + T̄ + εT †, p = pb + p̄+ εp†, C = C0 + C̄ + εC†, (2.12)

in which

Tb = T0 + (z − z0)/σR, pb = p0 − (z − z0)/βC̃ + (z − z0)
2/2σR. (2.13)

In (2.12) the variables with an overbar depend on the coordinate, x, normal to the
interface only and the † denotes variables depending on space and time, which have
a small amplitude ε. The remaining terms refer to the static solution. Expressions
(2.12) are substituted into (2.8)–(2.11). The terms of order ε0 give

0 = −∇p̄+ (w̄′′ + C̄ + T̄ )ẑ, w̄ = T̄ ′′, (2.14)

where the prime denotes differentiation of a basic-state variable with respect to the
argument, and the order-ε1 terms yield the linearized perturbation equations:

∂u†/∂t+ R(w̄∂u†/∂z + u† · ∇w̄ẑ) + Ta1/2ẑ × u† = −∇p† + ∇2u† + (C† + T †)ẑ, (2.15)

∇ · u† = 0, (2.16)
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σ∂T †/∂t+ σR(w̄∂T †/∂z + (u† · x̂)T̄ ′) + u† · ẑ = ∇2T †, (2.17)

(∂/∂t+ Rω̄∂/∂z)C† = 0. (2.18)

3. Stability of the rotating single interface
In this section we utilize the perturbation equations (2.15)–(2.18) to study the linear

stability of the solutions (3.3) below in the presence of rotation. Our interest here
concerns the instabilities driven by the difference in composition of the fluid on either
side of the interface at x = 0. It turns out that instabilities occur for small values of
the Reynolds number R. We shall then assume that

R � 1. (3.1)

We prescribe the concentration profile

C̄ = − 1
2
sgn(x) (3.2)

so that a sudden jump in concentration occurs at x = 0.
The basic-state equations (2.14) are independent of rotation, because the basic flow

is parallel to the angular velocity, and the solution is the same as that obtained for
the non-rotating case (EL1, §3). We include it here for the benefit of the reader:

ω̄± = − 1
2
exp(∓x/

√
2) sin(x/

√
2),

T̄± = ± 1
2
{1− exp(∓x/

√
2) cos(x/

√
2)}.

}
(3.3)

The upper (lower) superscript is used to identify the solution in the interval x > 0(x <
0), respectively. A full discussion of this solution is given in EL1.

The interface is disturbed so that it has the profile

x = εη(y, z, t) = εη0 exp(i(my + nz) + Ωt) + c.c. (3.4)

See figure 1. The perturbations (2.12) are strongly coupled to the interface. In general,
it is possible to consider disturbances which are not coupled to the interface, as can
be inferred from studies of the similar problem of a heated vertical wall (see e.g.
Holyer 1983) in the absence of rotation. However, instabilities associated with such
disturbances occur for order-1 values of the Reynolds number R and hence are less
unstable than the coupled disturbances studied here which suffer instability for small
values of R. We then assume that

{u†, p†, T †, C†} = {inu(x), nv(x), w(x), inp(x), T (x), C(x)}exp(i(my+nz)+Ωt)+c.c. (3.5)

The perturbation equations (2.15)–(2.18) can then be written in component form

(L− Ω∗)u− iTa1/2v −Dp = 0, (3.6)

(L− Ω∗)v − iTa1/2u+ mp = 0, (3.7)

(L− Ω∗)w − iRw̄′u+ C + T + n2p = 0, (3.8)

(L− σΩ∗)T − iRT̄ ′nu− w = 0, (3.9)

Du+ mv + w = 0, (3.10)

Ω∗C = 0, (3.11)

where

D ≡ d/dx, L ≡ D2 − a2, a2 = m2 + n2, (3.12)
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and the Doppler-shifted ’frequency’ is defined by

Ω∗ = Ω + inRw̄(x). (3.13)

Since Ω∗ depends on x, (3.11) demands that

C = 0. (3.14)

The perturbation variables are excited by the disturbance of the interface and must
all decay to zero away from the interface. The variables must also satisfy certain
conditions at the interface. The interface must be a material surface. The full variables
(basic + perturbation) and their derivatives must be continuous and the fluxes
of momentum and heat must also be continuous at the interface. The boundary
conditions on the perturbation variables can then be summarized as

u, v, w, T , p→ 0 as x→ ±∞, (3.15a)

u, v, w, T , p,DT ,Dv are continuous at x = 0, (3.15b)

Dw(0−)−Dw(0+) = 1, (3.15c)

iRnu(0) = Ω, (3.15d)

where in (3.15d) we have used the fact that w̄(0) = 0 so that (3.13) gives Ω∗ = Ω on
the interface.

The method of solution, as described in EL1, is by expansion in the small parameter
R:

Ω =

∞∑
r=1

ΩrR
r, f =

∞∑
r=0

frR
r, (3.16)

where f stands for any of the perturbation variables u, v, w, T , p. The expansion (3.16)
is substituted into (3.6)–(3.10) and the boundary conditions (3.15) and the different
powers of R are equated to zero to obtain a hierarchy of systems of equations which
can be solved successively.

The presence of rotation is represented by the terms proportional to Ta1/2 in (3.6)
and (3.7). It will be shown below that the presence of the Coriolis force leads to
a dramatic change in the stability properties of the interface. To proceed gradually
towards identifying the stability of the rotating single interface, let us examine the
case of small rotation rate first.

3.1. The effect of small rotation on the stability of the interface

The study of the stability of the interface in the absence of rotation carried out in
EL1 showed that the stability is determined, to leading order, by considering the
systems of equations corresponding to R0 and R1. It follows then from (3.6), (3.7),
(3.15) and (3.16), that rotation will contribute to the stability problem provided that
Ta1/2 > O(R). We then assume that

Ta1/2 = ΓR (3.17)

with Γ = O(1) in order to examine the influence of small rotation on the stability
of the interface. The analysis is carried out in the same way as in EL1.† For the
benefit of the reader we mention the main points here. When the expansions (3.16) are
substituted into (3.6)–(3.10) and the boundary conditions (3.15) and the coefficients
of Rr(r = 0, 1, 2, . . .) are equated to zero, the first two systems of equations and the

† This derivation is not published in EL1 but derived at a later stage. The full details of the
derivations can be obtained from either of the authors of EL1.
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associated boundary conditions are sufficient to determine the stability to leading
order.

When r = 0, we obtain the set of equations

Lp0 − T0 = 0, Lw0 + T0 + n2p0 = 0, LT0 − w0 = 0, (3.18a–c)

Lu0 −Dp0 = 0, Lv0 − mp0 = 0. (3.18d,e)

The associated boundary conditions are obtained from (3.15) by attaching a subscript
0 to all the variables and replacing Ω by Ω1. The solution of (3.18) can then be written
as

{u±0 , v
±
0 , w

±
0 , p

±
0 , T

±
0 } =

3∑
j=1

{∓λ,−m, µ3
j , µj , µ

2
j}Aje∓λjx, (3.19)

where

Aj =
µ2
j

2λj(3n2 + 2µj)
, µj = λ2

j − a2, (3.20)

and µj are the roots of the cubic equation

µ3 + µ+ n2 = 0. (3.21)

We also find from (3.15d) that

Ω1 = 0. (3.22)

The next system of equations is

Lp1 − T1 = Fp, Lw1 + T1 + n2p1 = Fw, LT1 − w1 = FT , (3.23a–c)

Lu1 −Dp1 = Fu, Lv1 − mp1 = Fv, (3.23d, e)

where

Fp = −2iw̄′u0, Fw = iw̄′u0 + iw̄u0, FT = iσ(T̄ ′u0 + w̄T0), (3.24a–c)

Fu = i(nw̄u0 + Γv0), Fv = i(nw̄v0 + Γu0). (3.24d, e)

The associated boundary conditions are obtained from (3.15) by attaching a subscript
1 to all the variables in (3.15a–c), by replacing the right-hand side of (3.15c) by 0 and
by writing (3.15d) as

inu2 = Ω2. (3.25)

Since the homogeneous part of (3.23) is identical to (3.18), we will not proceed to
solve (3.23). We derive the solvability condition which will provide an expression
for the growth rate Ω2. This can be done as follows. Multiply (3.23d) by exp(−ax),
integrate from x = 0 to x = ∞ and use the boundary conditions to get

Ω2 =
n

a

∫ ∞
0

w̄(x)u0(x)e−axdx+
Γ

a

∫ ∞
0

v0(x)e−axdx− in

∫ ∞
0

p1e
−axdx. (3.26)

Next we use (3.23a–c) to find that

L3p1 + Lp1 + n2p1 = L2Fp + LFT + Fp + Fw. (3.27)

Multiply both sides of (3.27) by

exp(−ax)−
3∑
j=1

n2 exp(−ax)

3n2 + 2µj
(3.28)
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Figure 2. The dependence of the maximum growth rate on Γ for small rotation rates. Note that
the curve is almost linear and the variations with Prandtl number σ are very small.

and integrate from x = 0 to x = ∞ and use the boundary conditions to get

n2

∫ ∞
0

p1e
−axdx =

∫ ∞
0

(Fp + Fw)e−axdx

−
3∑
j=1

n2

3n2 + 2µj

∫ ∞
0

(µ2
j Fp + µjFT + Fp + Fw)e−λjxdx. (3.29)

We now use (3.29) to eliminate the last integral from (3.26) to obtain an expression
for the growth rate Ω2, which can be written in the form

Ω2 = Ω20 + ΓΩ2T (3.30)

in which Ω20 is the expression obtained in the absence of rotation (see (4.30) in EL1),
and

Ω2T =
n

a

∫ ∞
0

v0e
−axdx = −mn

a

3∑
j=1

Aj

λj + a
. (3.31)

The growth rate Ω2, as given in (3.30), was maximized over m and n for different
values of σ and Γ . When Γ = 0, m and n occur in the forms m2 and n2, and the
maximum growth rate, as calculated in EL1, is independent of the signs of m and n.
For non-zero rotation rates, the combination mn appears as a multiplicative factor
in the expression for Ω2T , which is the contribution due to the presence of rotation.
We must therefore consider both the cases (i) mn > 0 and (ii) mn < 0. The results
show that when mn < 0, the growth rate increases with the increase of Γ . The
increase is linear as suggested by (3.30) which means that the contribution of the
factor corresponding to Γ dominates, even when Γ < 1.0. This is shown in figure 2,
which also illustrates the influence of the Prandtl number on the maximum growth
rate, Ω2max. Although the Prandtl number has little influence on the growth rate, it
has a marked influence on the wavenumbers m and n, as illustrated in figure 3. When
mn > 0, on the other hand, the growth rate is damped by the presence of rotation.

The contribution Ω2T to the growth rate is entirely due to the presence of the last
term in Fu, as given in (3.23) and (3.24). This term affects the velocity u† normal to
the interface and u† affects the displacement, η, of the interface according to

dη

dt
= Ru†(0, y, z, t). (3.32)
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Figure 3. The variations of the wavenumbers of the preferred mode with Γ for different values of
σ. Note that both wavenumbers vary rapidly with Γ when Γ is small but they soon attain steady
values as Γ increases beyond about 0.5.

If the contribution to u† in the absence of rotation is u†0 and the contribution due to

the presence of rotation is Ta1/2u
†
T then

u† = u
†
0 + Ta1/2u

†
T . (3.33)

The contribution u†T is due to the interaction of vertical rotation with the zonal flow
v†, as indicated by (3.23d) and (3.24d). From (3.19) we see that v† is proportional to
m which measures the inclination of the wavefront to the vertical. In the absence of
rotation there is symmetry with respect to the vertical and m occurs in the form m2 in
the expression for the growth rate, and there is no preference for either sign of m. In
the presence of rotation a vertical component of vorticity is introduced (see equation
(3.39) below) and this has the effect of destroying the symmetry in m. The vertical
vorticity due to rotation tilts the wavefront away from the vertical (i.e. away from
the axis of rotation) and u†T thus produced is in phase with η, resulting in the growth
of the displacement of the interface. This situation corresponds to mn < 0. If mn > 0
then u†T is out of phase with η and the disturbance is damped.

The linear increase of Ω2max with Γ suggests that when Ta = O(1), the dependence
of the growth rate on R is different from that for Γ = 0. We will discuss the case
Ta = O(1) next.

3.2. The stability of the rotating interface

When Ta = O(1), we find it convenient to scale v in the fashion

v = Ta1/2ṽ, (3.34)
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and define the scaled vertical component of vorticity, ζ†, by

ζ† = −iẑ · curlu†/nTa1/2, (3.35)

so that ζ† has the same dependence as the other variables in (3.5). The scaling in
(3.34) and (3.35) as well as that used in (3.5) is made to avoid the proliferation of
the parameters i, n,Ta1/2 in the equations below. We now use (3.6)–(3.8) and (3.10) to
find an equation for the pressure. The set of equations (3.6)–(3.10) can conveniently
be written in the form

Lw + T + n2p = RFw, (3.36)

LT − w = RFT , (3.37)

Lp− T − Taζ = RFp, (3.38)

Lζ + w = RFζ, (3.39)

(D2 − m2)ṽ = iDζ + mTa−1/2w, (3.40)

Du = −mTa1/2ṽ − w, (3.41)

where

Fw = iw̄′nu+ R−1Ω∗w, FT = iσT̄ ′nu+ σR−1Ω∗T , (3.42)

Fp = −2iw̄′nu, Fζ = nTa−1/2w̄′ṽ + Ω∗ζR
−1. (3.43)

We substitute the expansion (3.16) into (3.36)–(3.41) and equate the coefficients of
Rr(r = 1, 2 . . . .) to zero. The leading-order set of equations is obtained by attaching
a subscript ‘0’ to all the perturbation variables in (3.36)–(3.41) and the boundary
conditions (3.15), and replacing the right-hand sides of (3.36)–(3.39) by zero. The
equations resulting from (3.36)–(3.39) give

∇6w0 + ∇2w0 + n2(1− Ta)w0 = 0. (3.44)

The method of solution is straightforward. Equation (3.44) gives w0 and T0, ζ0, p0, v0

and uo are obtained from (3.37), (3.39), (3.38), (3.40) and (3.41), respectively, provided
we set the right-hand sides of (3.37)–(3.39) to zero. We find

{w±0 , T
±
0 , p

±
0 } =

3∑
j=1

{µ3
j , µ

2
j , µj(1− Ta)}Aje∓λjx, (3.45)

{u±0 , ṽ
±
0 } =

3∑
j=1

{±µjλj + imTa1/2, mTa−1/2µj± iλj}
Ajµ

2
j

µj + n2
e∓λjx. (3.46)

Here

Aj =
µ3
j − n2Ta

2λjµj[2µj + 3n2(1− Ta)]
(3.47)

and µj, λj are given by

µ3
j + µj + n2(1− Ta) = 0, λ2

j = µj + a2 (3.48)

such that Re(λj) > 0. Since the cubic equation (3.48) has real coefficients, it possesses
one real root and two complex conjugate roots. It can then be shown that

3∑
j=1

f(µj, λj , Aj) (3.49)
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Figure 4. The mode of maximum growth rate for the rotating single interface. As Ta increases from
zero, the growth rate increases sharply at first and then approaches an asymptote at 0.113; the vertical
wavenumber decreases moderately at first and then slowly for large Ta; the zonal wavenumber
(negative) increases in magnitude sharply at first and then more slowly. The corresponding value of
τ increases sharply at first and then slowly towards an asymptote at 1.22.

is always real for arbitrary function f provided that it does not contain any complex
constants. If we further use (3.47) and (3.48), we find

3∑
j=1

µ3
j λjAj

µj + n2
= 0, (3.50)

The growth rate Ω1, according to the boundary condition (3.15d) together with the
first of (3.46) and (3.50), is given by

Ω1 = −mnTa1/2

3∑
j=1

Ajµ
2
j

µj + n2
. (3.51)

According to (3.49) this expression, whose presence is wholly due to the effect of
rotation, is purely real. Consequently, the influence of rotation is to increase the
growth rate to order R from order R2 in the absence of rotation. Computations of
(3.51) showed that the growth rate has a positive maximum which is associated with
mn < 0, confirming the predictions of the small-Ta results obtained above. In fact
(3.51) arises from the second term in the expression for u±0 given by (3.46) which is

due to the second term in the expression for v±0 in (3.46) which is brought about by

the presence of the vertical vorticity ζ±0 in (3.40).

A sample of the results for the maximum growth rate, Ωmax, and the associated
vertical and transverse wavenumbers, nmax and mmax, respectively, is given in figure 4.
As Ta increases from zero, the maximum growth rate increases linearly and sharply
at first but when Ta reaches order 10 values it increases more slowly and approaches
an asymptote as Ta tends to infinity. This is confirmed by noting that the magnitude
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of nmax decreases steadily with Ta . An asymptotic analysis for Ta →∞ gives

Ω1 = mτ

3∑
j=1

µj/{2(2µj − 3τ2)(µj + m2)1/2}; τ = nTa1/2. (3.52)

This expression was maximized over τ and m to find that the maximum, Ωmax, of Ω1

and the associated values, τmax and mmax, of τ and m are

Ωmax = 0.113295, τmax = 1.22344, mmax = −0.70781. (3.53)

It then follows that the zonal wavenumber mmax remains of order 1 while

nmax ' 1.22344Ta−1/2; Ta →∞. (3.54)

It should be noted here that we have assumed n > 0 and m < 0. The reverse will
give the same growth rate.

Figure 4 also shows the dependence of nmax, mmax and τmax on Ta . The ’zonal’
wavenumber mmax of the maximum growth rate increases in magnitude but remains
negative and greater than −0.8. The vertical wavenumber nmax on the other hand
decreases steadily with Ta and takes the asymptotic form (3.54) as Ta increases
indefinitely, so that the wavelength parallel to rotation increases as Ta1/2. Also τmax
increases sharply at first but approaches a constant value, as in (3.53), when Ta →∞.
Of course τmax is not relevant to the maximum growth rate when Ta = O(1) but the
whole range of Ta is included in order to illustrate how the limit in (3.53) is reached.

The results of this section show that rotation has a destabilizing effect on the
vertical interface, and the maximum growth rate, Ωmax, is order R in the presence of
rotation as compared to the order of magnitude R2 in the absence of rotation. This
applies only for oblique disturbances. When the disturbance propagates vertically (i.e.
when m = 0) then it can be shown that Ωmax = O(R2), and rotation does not change
the asymptotic dependence of the growth rate on R, although it can increase the
numerical value of Ω/R2 for certain values of the Prandtl number σ.

3.3. Energy considerations

The role played by the new term in u can also be clarified by appealing to energy
considerations. Multiply equations (3.6), (3.7) and (3.8) by u∗, v∗ and w∗ (where a
superstar here refers to the complex conjugate), respectively , integrate and use (3.15)
to get

ΩEM = −DM + B + J + nR(M − iEWU)− in2TaEω. (3.55)

Here the term on the left-hand side represents the rate of change of wave kinetic
energy, DM defines the rate of viscous dissipation, M the rate of transfer of kinetic
energy from the mean flow to the wave through the velocity shear, B and J represent
the rates of gain of wave energy by the actions of thermal and compositional
buoyancy, respectively, and Eω is the wave energy due to the Coriolis force. These
are defined by

EM =

∫ ∞
−∞
|u|2dx, DM =

∫ ∞
−∞

{∣∣∣∣dudt
∣∣∣∣2 + a2|u|2

}
dx, (3.56a,b)

M = −i

∫ ∞
−∞
w̄′w∗udx, EWU =

∫ ∞
−∞
w̄|u|2dx, (3.56c,d)

B =

∫ ∞
−∞
w∗Tdx, Eω =

∫ ∞
−∞

(uv̄∗ + u∗v̄)dx, (3.56e,f)
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J = w∗(0)

(
dw(0−)

dx
− dw(0+)

dx

)
. (3.56g)

If we multiply the complex conjugate of (3.9) by T and integrate, we find

σΩ∗ET = −DT − B + σRn(H + iEWT ) (3.57)

where

ET =

∫ ∞
−∞
|T |2dx, DT =

∫ ∞
−∞

{∣∣∣∣dTdx
∣∣∣∣2 + a2|T |2

}
dx (3.58a,b)

H = i

∫ ∞
−∞
T̄ ′u∗Tdx, EWT =

∫ ∞
−∞
w̄|T |2dx. (3.58c,d)

Here ET is the gain in wave potential energy, DT the rate of thermal dissipation of
energy and H is the rate of transfer of energy to the wave by the temperature gradient
.

Adding (3.55) to (3.57) and taking the real and imaginary parts, we obtain

Re(Ω)[EM + σET ] = −(DT + DM) + Re(J) + nRRe(M + σH), (3.59)

Im(Ω)[EM − σET ] = Im(J) + nRIm(M + σH) + nR(σEWT − EWU)− n2TaEω. (3.60)

We can now use the expansion (3.16) in (3.59) and (3.60), noting that in view of
(3.15c) the expression for J takes the form J = w∗(0), to obtain for the first two terms
in the expansion

−(D(0)
M + D

(0)
T ) + Re(w∗0(0)) = 0, Im(w∗0(0)) = n2TaE(0)

ω , (3.61a,b)

Re(Ω1)bE(0)
M + σE

(0)
T c = −(D(1)

M + D
(1)
T ) + nRe(M(0) + σH (0)) + Re(w∗1(0)), (3.62a)

Im(Ω1)[E
(0)
M − σE

(0)
T ] = n(σE(0)

WT − E
(0)
WU) + nIm(M(0) + σH (0))

+Im(w∗1(0))− n2TaE(1)
ω . (3.62b)

Equation (3.61b) is automatically satisfied by the expressions (3.45) and (3.46) for w0,
u0 and v0 while (3.61a) represents a balance between compositional buoyancy on the
one hand and both thermal and viscous diffusions on the other. Equation (3.62a)
shows that the growth rate Re(Ω1) is a result of the excess energy from compositional
buoyancy, as represented by w∗1 , and from the release of energy by the basic flow,
as represented by M, and temperature gradient, through the presence of H , over the
dissipation of energy by thermal and viscous diffusions. In the absence of rotation,
the right-hand side of (3.62a) vanishes and the growth rate is zero to this order
of approximation. However, when rotation is present, the even part of the leading-
order flow normal to the interface which is introduced by the presence of rotation,
contributes to M(0) and H (0) as well as to w1(0), and leads to a non-zero right-hand
side which is positive when mn < 0.

The single interface has provided a simple example to illustrate the destabilizing
influence of rotation. In the next section we study the more realistic model of a
cylindrical plume in order to examine the role played by the thickness of the plume
and the curvature of the plume surface.
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Figure 5. The geometry of the cylindrical plume.

4. The cylindrical plume
Consider a compositional plume in the form of a right circular cylinder of radius

s0. We consider a cylindrical system of coordinates (s, φ, z) with the z-axis pointing
vertically upwards along the axis of the plume, s is radially outwards and φ is the
zonal angle (see figure 5).

The basic-state concentration is taken as the top-hat profile

C̄ =

{
1 for s < s0
0 for s > s0.

(4.1)

The plume is rotating uniformly about the vertical with uniform angular velocity
ω. The basic state which was given and discussed in EL1 (see also (4.25) below), is
associated with both the vertical flow, w̄(s), and temperature, T̄ (s), being even in s.
The temperature is negative on the axis s = 0 and increases monotonically with s to 0
as s→∞. T̄ (0) decreases with the increase of s0 and approaches −1.2 as s0 increases
indefinitely. The vertical flow, w̄(s), is oscillatory in s, takes positive values on the axis
and decays to zero for large s. w̄(0) oscillates with the radius of the plume and attains
an overall maximum when s0 is near 2.0. The buoyancy flux of the basic state also
attains a maximum value when s0 is near 2.0.

The perturbation equations are given in (2.15)–(2.18). For the purpose of the
analysis in this section, we find it convenient to write them in the form

∇p† + curl2u† − T †ẑ + Ta1/2ẑ × u† = −RF †, (4.2)

∇2T † − u† · ẑ = RG†, (4.3)

∇ · u† = 0, (4.4)

where

F † =
1

R

∂u†

∂t
+ w̄

∂u†
∂z

+ u† · ∇w̄ẑ, G† =
σ

R

∂T †

∂t
+ σ

(
w̄
∂T †

∂z
+ u† · ∇T̄

)
. (4.5)

The perturbation in concentration, C†, also vanishes here.
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The disturbed profile of the interface at s = s0 takes the form

s = s0 + εη(ϕ, z, t), η(ϕ, z, t) = η0 exp (Ωt+ inz + iqϕ) + c.c. (4.6)

See figure 5. The fact that the instability is entirely due to the disturbance of the
interface allows us to write

{u†, p†, T †} = {u(s), p(s), T (s)} exp (Ωt+ inz + iqϕ) + c.c. (4.7)

We shall always use the superscript † to refer to variables containing the exponential,
while variables without this superscript will be considered to be functions of s only.

We now introduce the toroidal and poloidal parts of the velocity by

u† = curl(U†ẑ) + curl2(V †ẑ) (4.8)

so that (4.4) is automatically satisfied. We next apply the operators ẑ · curl, ẑ · curl2

and ∇. to (4.2) and use (4.8) in (4.3) to find that the perturbation equations take the
form

∆(∇2U† + inTa1/2V †) = −Rẑ · curlF †, (4.9)

∆(∇4V † − inTa1/2U† − T †) = Rẑ · curl2F †, (4.10)

∇2p† − inT † + Ta1/2∆U† = −R∇ · F†, (4.11)

∇2T † + ∆†V † = RG†, (4.12)

in which

∆ = ∇2 − ∂2/∂z2 (4.13)

and ∇2 is the usual Laplacian in cylindrical coordinates. According to (4.8), the
vertical velocity w†, the radial component of velocity u† and the zonal component v†

are given by

w† = −∆V †, u† = iqs−1U† + in∂V †/∂s, v† = −∂U†/∂s− nqV †/s. (4.14)

The boundary conditions appropriate to the cylindrical geometry are:

u, T , p are analytic, (4.15a)

u, T , p, dv/ds, dT/ds are continuous across s = s0, (4.15b)

dw(s0−)/ds− dw(s0+)/ds = 1, (4.15c)

Ru = Ω + inRw̄(s0). (4.15d)

As we have already shown in the case of the single interface, the stability problem
is determined, to leading order, by the zero-order terms in the perturbation equations
(4.9)–(4.12). Neglecting the right-hand sides, the equations give (suppressing the
exponential part)

M3V0 + MV0 + n2(1− Ta)V0 = 0, (4.16)

in which

M ≡ d2

ds2
+

1

s

d

ds
− n2 − q2

s2
. (4.17)

This equation has constant coefficients and its solution can be written in terms of
modified Bessel functions. The application of the boundary conditions (4.15a–c) leads
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to the solution

[V0, U0, T0, p0] = s0

3∑
j=1

Bj[µ
2
j ,−inTa1/2µj,−ξ2

j µj ,−in(1− Ta)ξ2
j ]Kq(ξjs0)Iq(ξjs) (4.18)

for s < s0; and

[V0, U0, T0, p0] = s0

3∑
j=1

Bj[µ
2
j ,−inTa1/2µj,−ξ2

j µj ,−in(1− Ta)ξ2
j ]Iq(ξjs0)Kq(ξjs) (4.19)

for s > s0. Here µj (j = 1,2,3) is given by

µ3
j + µj + n2(1− Ta) = 0, (4.20)

and

ξ2
j = µj + n2, Bj =

1

2µj + 3n2(1− Ta)
. (4.21)

In (4.21), ξj must be chosen such that Re(ξj) > 0. The remaining boundary
condition, (4.15d), gives an expression for Ω1. If we note that replacing Aj by Bj in
(3.49) leads to a real expression also, we have

Ω1 = −inΩi + nqTa1/2Ωg, (4.22)

in which Ωi and Ωg are real and given by

Ωi = w̄(s0)− s0
3∑
j=1

Bjξjµ
2
j I
′
q(ξjs0)Kq(ξjs0), (4.23)

Ωg =

3∑
j=1

BjµjIq(ξjs0)Kq(ξjs0). (4.24)

In (4.23), w̄(s) is the basic upward plume flow given by (see EL1, §3)

w̄ = Im(w̃), w̃ =

{
−ks0K1(ks0)I0(ks) for s < s0,
ks0I1(ks0)K0(ks) for s0 < s,

(4.25)

where

k = (1 + i)/
√

2 (4.26)

Expression (4.22) reduces to that obtained for the non-rotating plume by Eltayeb
& Loper (1997) when Ta = 0. The presence of rotation introduces the extra term
Ωg which is real and it imparts a growth rate of order R to the disturbance. If Ωg
is positive then the plume is unstable while negative values of Ωg give stability. The
preferred mode of instability is the maximum possible positive value of Ωg taken over
all possible values of the wavenumbers n and q, for any fixed s0 and Ta . It is to be
noted that the Prandtl number does not appear in the expression for the growth rate
and therefore the stability is independent of the Prandtl number, to leading order.

Expression (4.22) was evaluated numerically. The computations showed that Ωg is
positive for a whole range of values of n, q, s0 and Ta . The maximum growth rate,
Ωmax, of Ωg and the associated values, nmax and qmax, of n and q were identified in
the (s0,Ta)-plane. Again it was found that the preferred mode is associated with
nq < 0. The computations were carried out for n < 0 and q > 0. Reversing the
signs of n and q will yield the same growth rate. The main features of the stability
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Figure 6. The regions of the (Ta , s0)-plane where the discrete zonal wavenumbers are preferred.
The region labelled q = N represents the domain in which the maximum growth rate is associated
with a zonal wavenumber qmax = N. The maximum vertical wavenumber in the various region is
illustrated in figures 7–9.

are illustrated in figures 6–9. Figure 6 summarizes the dependence of the stability
on the zonal wavenumber qmax. The asymmetry of the preferred mode, as measured
by qmax, increases with the radius of the plume, s0. As s0 increases to infinity, qmax
increases proportionately so that q/s0 remains of order unity and the plume matches
with the single interface. The dependence of the maximum growth rate, Ωmax, and the
associated vertical wavenumber, nmax, on Ta in the various regions defined by qmax
on Ta and s0 are quite similar. Some samples of the results are presented in figures
7–9. In figure 7, we see that Ωmax increases sharply with Ta when Ta is small and
more slowly for values of Ta in excess of about 5. The growth rate is almost the
same for values of s0 more than about 5, although the values of qmax change with the
increase of s0. The wavenumber nmax decreases with Ta , whatever the value of qmax.
The dependence of Ωmax and nmax on s0 is illustrated in figures 8 and 9. For moderate
values of Ta , Ωmax increases sharply from 0 at s0 = 0 with qmax = 1 until s0 is about
2.5 and thereafter Ωmax increases slowly with qmax jumping to the next higher integer
after an interval of about 2 (see figure 8a). Figure 8(b) shows the behaviour of nmax.
For every value of qmax, nmax decreases with s0. However, the decrease is sharper for
smaller values of qmax. Figure 9 illustrates the dependence of Ωmax, qmax and τmax on
s0 when Ta →∞. Here the asymptotic law

τ = nTa1/2 = O(1), Ta →∞ (4.27)

applies for n. The maximum growth rate Ωmax increases more sharply (than for
moderate Ta) with s0 when s0 is small and the intervals for which the various values
of qmax are preferred become shorter. The behaviour of nmax with s0 is similar to that
found for moderate values of Ta .

The imaginary part, Ωi, of Ω1, as given in (4.22) and (4.23), is non-zero. Unlike the
single interface where the basic flow vanishes on the interface, the cylindrical plume
has, in general, non-zero basic flow on the interface. The imaginary part of Ω1 does
not vanish so that the perturbations can accommodate the harmonic deflection of the
interface. Now Ωi depends on both n and q and gives rise to the vertical phase speed,
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Figure 7. The dependence of the maximum growth rate, Ωmax, and the associated vertical wavenum-
ber, nmax, on the Taylor number. In (a) the upper and lower curves refer to Ωmax when s0 = 5.0
and s0 = 2.0, respectively. The arabic numerals refer to the values of qmax corresponding to that
range of s0. For all values of s0 the growth rate increases sharply for small Ta but more slowly for
Ta in excess of about 5. The change in qmax can also be deduced from figure 6. The continuous
and discontinuous parts are used alternately in order to clarify the sections relevant to the different
values of qmax. In (b) the dotted curve corresponds to s0 = 2.0 and the others to s0 = 5.0.

Uz , and the zonal phase speed, Uϕ, defined by

Uz = Ωi, Uϕ = (n/q)Ωi. (4.28)

It follows immediately from (4.28) that Uz and Uφ are related by

Uz = (q/n)Uϕ. (4.29)

Since nq < 0 then Uz and Uφ always have different signs. This means that the
phase propagation is either clockwise up the plume or anticlockwise down the plume.
Figure 10 gives the isolines of the zonal phase speed, Uϕ, in the (s0, n)-plane for
Ta = 20. It is found that the shapes of the contours do not change very much with
q but the numerical values decrease with the increase in q. It is also found that the
zonal phase speed is positive for the range of values of n relevant to the maximum
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Figure 8. The dependence of the growth rate, Ωmax, and the vertical wavenumber, nmax, on s0. In
both (a) and (b) the numbers refer to the corresponding values of qmax. In (a) the upper (lower)
curves refer to Ta = 5.0 (Ta = 2.0). The growth rate increases sharply from zero (when s0 = 0)
with s0 for small s0 and is almost constant for s0 greater than about 10. The continuous and
discontinuous parts are used alternately in order to clarify the sections relevant to the different
values of qmax. In (b) the curves for Ta = 5.0 only are shown. Note that the vertical wavenumber
decreases more rapidly when s0 is small.

growth rate. Consequently the unstable waves propagate in the prograde direction.
Since Uz and Uϕ have different signs, vertical phase propagation of the unstable
waves is downwards. The unstable waves then propagate anticlockwise downwards.

5. Concluding remarks
The stability of a vertical circular cylindrical compositional plume rising in an

infinite less-buoyant fluid, with the plume and fluid rotating uniformly about the
vertical, has been studied in the case of small Reynolds number. In the absence of
rotation Eltayeb & Loper (1997) have shown that the plume is prone to instability
for small values of the Reynolds number R, which is directly proportional to the
amplitude of the concentration of the light material. They found that the maximum
growth rate (providing the preferred mode of instability) is proportional to R2. It is
shown here that the presence of rotation enhances the instability of the plume. The
rotation rate is measured by the dimensionless Taylor number Ta . For moderate and
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alternately in order to clarify the sections relevant to the different values of qmax.

large Ta , the maximum growth rate is proportional to R, so that it is asymptotically
larger than in the absence of rotation. The preferred mode is, as in the absence
of rotation, oscillatory with a phase speed of the order R so that the period of
oscillation is

τosc =
L

U
=

ν

U2
=

νρ

(∆ρ)cgL
, (5.1)

where (∆ρ)c is the jump in density associated with the jump in concentration. This
order of magnitude is the same as that obtained in the absence of rotation. The time
scale of growth, τgrow , of the disturbance here has the same order of magnitude as
(5.1) and is very different from that obtained in the absence of rotation.

The instability is necessarily three-dimensional. The product nq of the vertical
wavenumber n and the zonal wavenumber q must be strictly negative. The mechanism
responsible for the instability can be traced to the interaction between the zonal
component of velocity and the vertical rotation. This interaction gives rise to a
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Coriolis force normal to the interface separating the plume from the surrounding
fluid. This force produces a velocity component normal to the interface. Since the
interface is a material surface, this normal component is directly related to the
displacement of the interface (see (3.32) above). Since the zonal component of the
perturbation velocity is proportional to the zonal wavenumber, the Coriolis force
is most effective when the disturbance propagates at an angle to the interface. If
nq < 0, the wave front is inclined away from the interface and the displacement of
the interface is enhanced, thus leading to instability.

The analysis presented above may have relevance to conditions at the surface of
the inner core of the Earth where small-scale motions may ensue as a result of the
settling of the solidified heavy iron component in the iron-rich fluid alloy forming
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the outer core of the Earth. Near the inner core boundary, the thermal diffusivity is
4.2 × 10−6 m s−2, the coefficient of thermal expansion is 6.7 × 10−6 s−1, acceleration
due to gravity is 4.4 m s−2 and the temperature gradient is about 2.3 × 10−4 K m−1

(Stacey, 1992, pp. 454, 459). The viscosity of the Earth’s outer core is very uncertain
and can be assumed to vary between 10−7 m2 s−1 and 102 m2 s−1 (Acheson & Hide
1973, p. 202). We then find that L varies between 0.05 m and 50.6 m while Ta varies
between 10−8 and 10.2. The results obtained above showed that instability occurs for
the whole range of values of the parameter Ta and this makes it difficult to rule out
the relevance of the plumes to the geodynamo. However, the Reynolds number R
may be large in which case the instabilities are likely to be nonlinear. It would then
be of interest to investigate the nonlinear development of the plumes. Such a study
may clarify the manner in which the unstable waves evolve and whether the unstable
waves can break up the plume into blobs which rise to the surface of the outer core.
In such a case these motions may contribute to dynamo generation (Moffatt 1992).
On the other hand, the presence of a magnetic field may modify the linear stability
results obtained here. It may then be more plausible to examine the influence of the
magnetic field on the linear stability of the plume before a nonlinear analysis can be
attempted. This will be reported in another publication.
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